Статьи

Солнечное электричество. Фотоэлектрические (солнечные) модули.

Когда появились? Немного истории.

Трудно переоценить роль электричества в современном мире. С того времени, как человек научился производить его в промышленных масштабах, технический прогресс помчался вперед с космической скоростью. И в прямом, и в переносном смысле.

Получать электричество можно различными способами. Один из самых экологичных – преобразование солнечной энергии в электрическую с помощью фотоэлектрических модулей. Или, как их еще называют, солнечных батарей.

 

Чаще всего в различных источниках можно встретить информацию, что первые в мире солнечные батареи появились в 1954 году. Именно тогда ученые Дерилл Чапин, Кэл Фуллер и Гордон Пирсон создали солнечную батарею на основе кремния. Коэффициент полезного действия этой батареи равнялся всего лишь четырем процентам.

Но намного раньше выявить связь между светом и электричеством удалось немецкому физику Генриху Герцу. Во время своих исследований он пришел к выводу, что разряд между 2-мя электродами при ультрафиолетовом свете происходит быстро и легко. Доказал взаимосвязь между светом и электричеством Генрих Герц в 1887 году. Физик убедил всех в том, что световые волны во многом похожи на электромагнитные волны (распространение волн, наличие теней и т.д.). Все это он продемонстрировал на гигантской призме из 2-х тонн асфальта.

 

Через некоторое время этими данными заинтересовался профессор-физик МГУ Александр Столетов. С 1888 года ученый начал активно изучать это таинственное явление. Именно он и выработал 1-ый электрический ток, который появился под воздействием световых лучей. В тридцатые годы двадцатого века физик Борис Коломиец создал первый медный фотоэлемент с рекордным для тех времен КПД в один процент. Затем ученые начали создавать кремниевые фотоэлементы. В первых образцах КПД уже было значительно выше – около шести процентов. С тех пор изобретатели начали активно задумываться о преобразовании солнечного света в электроэнергию.

 

25 апреля 1954 года — дата, вошедшая в историю: специалисты компании «Bell Laboratories» сделали заявление о создании первых солнечных батарей на основе кремния для получения электрического тока. Это были сотрудники компании — Кельвин Фуллер, Дэрил Чапин и Геральд Пирсон. Прошло 4 года, и 17 марта 1958 года в США был запущен первый искусственный спутник с солнечными батареями. А через два месяца, 15 мая 1958 года в СССР запустили Спутник-3, также с солнечными батареями на борту.

 

Первые солнечные панели в середине 50-х годов казались лишь технологической игрушкой, не более. Ведь ячейка солнечной батареи, которая производила 1 ватт электроэнергии, стоила 250 долларов. А электроэнергия стоила в 100 раз дороже, чем электроэнергия с обычной ТЭЦ. КПД таких батарей был не более 6%. Долгое время солнечные батареи использовались только для космоса и для решения довольно небольшого перечня задач. Слишком дорогой была полученная таким путем энергия. Через 22 года, в 1977 году стоимость снизилась до 76 долларов за 1-ваттную ячейку.

Солнечная энергетика в мире сегодня. Общая ситуация, прогноз.

Постепенно исследования в области фотоэлектрических модулей позволили повысить КПД до 15% к середине 90-х годов прошлого века, а к началу 21 века КПД стал достигать значения 20%. За последнее десятилетие был сделан большой шаг вперед и были достигнуты значения КПД в 26%. Стоимость упала ниже 1 доллара и продолжает падать.

Воплощение оптимистических прогнозов в реальность во многом связано с уровнем технологического развития. В настоящий момент существует технологическая возможность извлечения из солнечного света только незначительной части энергии, но даже этот объем уже является существенным для европейской энергетической инфраструктуры, где возобновляемым источникам, включая солнечные электростанции, отводится не менее 20% уже к 2020 году.

Через пять лет солнечная энергетика в мире вырастет на 177%. А средний  ежегодный объем ввода новых мощностей на солнечной энергии составит около 64 ГВт, или 48% ежегодно.

Такие прогнозные данные обнародовало Международное энергетическое агентство (IEA).

По данным агентства уже к 2020 году суммарная установленная мощность солнечных электростанций в мире приблизится к 500 ГВт.

Как работает солнечный модуль? Основные принципы.

Принцип работы солнечного модуля, который является основой солнечной электростанции, довольно прост — поверхность модуля улавливает солнечный свет и за счёт проводниковых свойств кремния преобразует его в электрическую энергию.

Солнечные электростанции состоят из солнечных модулей, подключённых в единую цепь, инверторов и другого оборудования.

Инвертор или преобразователь напряжения — устройство, которое преобразует постоянный ток в переменный;

контроллер заряда (КЗ) аккумуляторной батареи — аппарат, который не допускает перезаряда аккумуляторов, а также их полного разряда;

аккумуляторная батарея (АКБ), накапливающая энергию для ее использования в темное время суток.

Существуют два основных типа солнечных электростанций:

сетевые — отпускающие всю вырабатываемую электроэнергию в сеть (здесь не нужны аккумуляторные батареи)

и автономные (включающие в себя непосредственно сами солнечные модули, преобразователь напряжения, контроллер заряда и АКБ). К автономным относятся и станции, где в качестве дополнительного источника энергии используется бензо- или дизель генератор.

 

 

 

На автономных станциях за счёт установки аккумуляторов есть возможность накапливать электроэнергию для использования, например, в тёмное время суток.

 

  1. Какие бывают солнечные модули? Виды солнечных панелей.

На данный момент типов солнечных батарей появилось огромное количество. И будет появляться ещё, потому что технологии не стоят на месте. Вот такая схема помогает наглядно продемонстрировать основные типы.

И всё же самыми распространенными на сегодняшний день являются: монокристаллические, поликристаллические и модули из микроморфного кремния.

  • ▬ Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.
  • ▬ Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность.
  • ▬ Тонкопленочные модули (микроморфная технология). Такая технология обеспечивает, в первую очередь, большую эффективность и скорейший возврат инвестиций: микроморфный модуль преобразовывает как видимый, так и инфракрасный спектр солнечного излучения.

Если с предыдущими видами модулей всё более или менее понятно, то с этой категорией фотовольтаических панелей нужно разобраться.

Преимущества тонкопленочных модулей (микроморфная технология)  по сравнению с кристаллическими модулями (моно- и поликристаллы):

  • • Меньший температурный коэффициент снижения мощности обеспечивает большую выработку энергии на ватт установленной мощности в летний период
  • Лучшая чувствительность к низкой освещенности. Обеспечивает большую выработку электроэнергии в пасмурную погоду
  • Высокое выходное напряжение позволяет уменьшить сечение провода от модуля до контроллера или инвертора
  • Меньшая стоимость за ватт вследствие в 10 раз меньшего расхода кремния при производстве тонкопленочных модулей
  • • Эстетичный внешний вид, возможность интеграции на фасады зданий
  • • Под заказ возможна поставка модулей с частичной (от 5% до 20%) прозрачностью, для более гибкого использования в архитектурных решениях
  • • При работе с контроллерами MPPT для заряда аккумуляторных батарей продолжительность обеспечения зарядного тока для аккумуляторов при низкой освещенности существенно возрастает, т.к. модуль имеет большой запас по входному напряжению (до 160В против 20-45В у кристаллических модулей). Это позволяет запасти больше электроэнергии в аккумуляторах утром, вечером и в пасмурную погоду.

Недостатки тонкопленочных модулей (микроморфная технология)  по сравнению с кристаллическими модулями (моно- и поликристаллы):

  • • Примерно в 1,5 раза меньший КПД (модули имеют почти в 2 раза большую удельную площадь и массу)
  • • Бóльшая деградация в первые месяцы работы. Этот недостаток компенсируется повышенной начальной мощностью (в начале эксплуатации мощность на 10% выше номинальной, и через 3 месяца снижается до ~100% от номинальной и остается на этом уровне). В дальнейшем стабильность параметров аналогична кристаллическим модулям. Сроки стабилизации параметров могут немного меняться в зависимости от места установки и от условий окружающей среды.
  • • Нестандартное выходное напряжение, для заряда аккумуляторов требуется MPPT контроллер с повышенным входным напряжением. Однако в настоящее время это вряд ли можно назвать недостатком, т.к. в большинстве случаев и для кристаллических модулей используются MPPT контроллеры для повышения выработки электроэнергии и для согласования напряжения модулей и аккумуляторов.
  • Готовятся к выходу этой весной на заводе в Новочебоксарске новые гетероструктурные солнечные модули (на основе гетероперехода HJT) . Модули нового поколения сочетают преимущества тонкопленочной и кристаллической технологий. КПД составит не менее 20%. Производители обещают очень высокую эффективность этих солнечных модулей при затенении и рассеянном освещении.

Их характеристики:

Длина 1656 мм
Ширина 991 мм
Вес 28 кг
Напряжение холостого хода 43.2 В
Напряжение при номинальной мощности 38.9 В
Номинальная пиковая мощность 260 Вт, 280 Вт, 300 Вт

 

  1. Насколько эффективны солнечные электростанции в Кемеровской области?

Россия обладает достаточно высоким уровнем инсоляции – у нас есть довольно много районов, где среднегодовой приход солнечной радиации составляет 4–5 кВт*ч на квадратный метр в день (этот показатель соизмерим с югом Германии и севером Испании – странах-лидерах по внедрению солнечных систем). При этом высокий уровень инсоляции в России не только на юге –  Краснодарском крае, Ростовской области, Кавказе, но также на Алтае, да и в целом на юге Сибири, Дальнем Востоке и в Забайкалье – в этих регионах количество солнечных дней в году доходит до 300.

Ниже – карта солнечной инсоляции РФ. Инсоляция — (от лат. in solo выставлено на солнце) количество электромагнитной энергии (солнечной радиации), падающей на поверхность земли. Инсоляция измеряется числом единиц энергии, падающей на единицу поверхности за единицу времени. Обычно инсоляцию измеряют в кВт*час/м2.

По условиям солнечной инсоляции Кемеровской области «достается» солнца чуть меньше (примерно на 10%), чем Краснодарскому краю. И дело даже не в том, что у нас холоднее. У нас-то как раз зимой солнечного света больше, чем в том же Краснодаре (из-за морозных ясных солнечных дней). Мороз абсолютно не страшен для солнечных модулей. Им не нужно тепло, только солнечный свет.

По поводу того, какие солнечные модули (моно-, поликристаллы или же микроморфные) наиболее эффективны именно у нас в Кузбассе, однозначного ответа просто нет. И категоричные рекомендации по этому поводу («только вот такие и никакие другие») мы давать не будем. Всё зависит от конкретной станции, её мощности, расположения оборудования, задач, которые она будет решать. Можем сказать лишь одно, чем мощнее будет станция, тем выгоднее становятся именно микроморфные модули: и по эффективности своей, и по стоимости. Для небольших по мощности станций самый простой и экономичный выбор – поликристаллические солнечные модули. Есть свои доводы и в пользу монокристаллов. У них выше КПД.

  1. Цели создания автономных солнечных электростанций.

Электрификация труднодоступных сельских посёлков и поселений Кузбасса, а также мест компактного проживания, находящихся вне зоны централизованного электроснабжения, с целью:

— улучшения социальной обстановки в отдалённых районах;

— создания условий для комфортного проживания и трудоустройства населения;

— развития фермерских хозяйств и традиционных промыслов;

— создания условий для притока и закрепления населения в отдалённых районах;

— гарантированного доступа в информационное пространство;

— сохранения экологической чистоты и ландшафтной целостности территорий;

— обеспечения заповедных, рекреационных курортных зон экологически чистой электроэнергией;

и т.д.

  1. Преимущества использования СЭС.
  • ▬ Солнечные модули (СМ) практически не изнашиваются, поскольку не содержат движущихся частей и крайне редко выходят из строя (это дает определенное преимущество Солнечной электростанции перед Солнечно-ветровой, т.е. с использованием ветрогенераторов).
  • Длительный срок службы СМ без ухудшения эксплуатационных характеристик — 25 лет и более, что подтверждено многолетней практикой использования. Ни один другой генератор не способен столько работать.
  • ▬ Функционирование СМ не зависит от технических неполадок энергопоставщиков.
  • ▬ Солнечным модулям не нужно топливо, что дает возможность не зависеть ни от цен на него, ни от проблем с транспортировкой.
  • Нет всплесков и отключений энергии. СЭС – источник высококачественного напряжения. Что положительно сказывается на сроке службы работающего от солнечной станции оборудования.
  • ▬ Совершенно исключается тщательное эксплуатационное обслуживание Солнечной электростанции. Установка работает самостоятельно долгие годы, практически не требуя ухода.

 

 

 

 

Call Now Button